跳至主要內容

常用公式结论

𝓳𝓭𝔂𝓼𝔂𝓪大约 6 分钟高数公式结论

常用公式结论

基础公式

anbn=(ab)i=0n1aibn1i=(ab)(a0bn1+abn2+a2bn3++an3b2+an2b+an1b0) \begin{aligned} a^{n}-b^{n}& \begin{aligned}&=(a-b)\sum_{i=0}^{n-1}a^i b^{n-1-i}\end{aligned} \\ &=(a-b)(a^0b^{n-1}+ab^{n-2}+a^2b^{n-3}+\cdots+a^{n-3}b^2+a^{n-2}b+a^{n-1}b^0) \end{aligned}

详聊如何理解open in new windowanbna^n-b^n因式分解

a3+b3=(a+b)(a2ab+b2)a3b3=(ab)(a2+ab+b2) \begin{align*} a^3+b^3&=(a+b)(a^2-ab+b^2)\\ a^3-b^3&=(a-b)(a^2+ab+b^2) \end{align*}

12+22++n2=n(n+1)(2n+1)6 1^2+2^2+\dots+n^2=\frac{n(n+1)(2n+1)}{6}

如何求解open in new window12+22++n21^2+2^2+\dots+n^2

13+23++n3=(n(n+1)2)2 1^3+2^3+\dots+n^3=\left(\frac{n(n+1)}{2}\right)^2

自然数立方和公式推导方法汇总open in new window

x1+x<ln(1+x)<x \frac{x}{1+x}<\ln(1+x)<x

数列

等比数列

an=a1×qn1an=am×qnm \begin{align*} a_{n}&=a_{1}\times q^{n-1} \\ a_{n}&=a_{m}\times q^{n-m} \end{align*}

Sn={na1,q=1a1×(1qn)1q=a1anq1q,q1 S_n=\begin{cases} &na_{1},\quad q=1 \\ & \displaystyle\frac{a_1\times (1-q^n)}{1-q}=\frac{a_{1}-a_{n}q}{1-q},\quad q\neq 1 \end{cases}

limnSn=a11q(q<1) \lim_{ n \to \infty } S_{n}= \frac{a_{1}}{1-q}(|q|<1)

点到直线距离

对于直线ax+by+c=0ax+by+c=0,点(x0,y0)(x_{0},y_{0})到直线的距离为ax0+by0+ca2+b2\displaystyle \frac{ax_{0}+by_{0}+c}{\sqrt{a^2+b^2 }}

三角函数

x(0,π/2),sinx<x<tanxx\in(0, \pi/2),\sin x<x<\tan x

诱导公式

sin(π2+α)=cosα \sin\left( \frac{\pi}{2}+\alpha \right)=\cos\alpha

sin(π2α)=cosα \sin\left( \frac{\pi}{2}-\alpha \right)=\cos\alpha

cos(π2+α)=sinα \cos\left( \frac{\pi}{2}+\alpha \right)=-\sin\alpha

cos(π2α)=sinα \cos\left( \frac{\pi}{2}-\alpha \right)=\sin\alpha

和差化积

sinxcosy=12[sin(x+y)+sin(xy)] \sin x\cos y=\frac{1}{2}[\sin(x+y)+\sin(x-y)] \\

cosxsiny=12[sin(x+y)sin(xy)] \cos x\sin y=\frac{1}{2}[\sin(x+y)-\sin(x-y)] \\

sinxsiny=12[cos(xy)cos(x+y)] \sin x\sin y=\frac{1}{2}[\cos(x-y)-\cos(x+y)] \\

cosxcosy=12[cos(x+y)+cos(xy)] \cos x\cos y=\frac{1}{2}[\cos(x+y)+\cos(x-y)] \\

sinx+siny=2sinx+y2cosxy2 \sin x+\sin y=2\sin\frac{x+y}{2}\cos\frac{x-y}{2} \\

sinxsiny=2cosx+y2sinxy2 \sin x-\sin y=2\cos\frac{x+y}{2}\sin\frac{x-y}{2} \\

cosx+cosy=2cosx+y2cosxy2 \cos x+\cos y=2\cos\frac{x+y}{2}\cos\frac{x-y}{2} \\

cosxcosy=2sinx+y2sinxy2 \cos x-\cos y=-2\sin\frac{x+y}{2}\sin\frac{x-y}{2} \\

函数

φ(x)\varphi(x)是可微函数f(x)f(x)的反函数,则

φ([f(x)])=x \varphi([f(x)])=x

极限

常用的等价无穷小

x0x\rightarrow 0时,有

sinxxarcsinxx1cosx12x2tanxxarctanxxax1xlna(a>0)(1+x)α1αx(α为任意常数)1+x1xxxln(1+x)12x2xsinx16x3xarcsinx16x3xarctanx13x3xtanx13x3 \begin{align*} \sin x&\sim x \\ \arcsin x&\sim x \\ 1-\cos x &\sim \frac{1}{2}x^2 \\\tan x&\sim x\\ \arctan x&\sim x\\ a^x-1&\sim x\ln a(a>0)\\ (1+x)^\alpha-1&\sim \alpha x(\alpha \text{为任意常数})\\ \sqrt{1+x}-\sqrt{1-x}&\sim x\\ x-\ln{(1+x)}&\sim \frac{1}{2}x^2 \\ x-\sin x &\sim \frac{1}{6}x^3 \\ x-\arcsin x &\sim -\frac{1}{6}x^3 \\ x-\arctan x &\sim \frac{1}{3}x^3 \\ x-\tan x &\sim -\frac{1}{3}x^3 \end{align*}

函数常用极限

limnarctanx=π2\lim\limits_{ n \to -\infty }\arctan x=-\frac{\pi}{2}limn+arctanx=π2\lim\limits_{ n \to +\infty }\arctan x=\frac{\pi}{2}

两个重要极限

limx0sinxx=1limx0(1+x)1x=e \begin{array}{c} \displaystyle\lim_{x\rightarrow 0} \frac{\sin x}{x}=1\\ \displaystyle{\lim_{x\rightarrow 0}(1+x)^{\frac{1}{x}}}=e \end{array}

一些解题公式

limx0xsinxx3=16limx0arcsinxxx3=16limx0tanxxx3=13limx0xarctanxx3=13 \begin{aligned} &\displaystyle\lim_{x\rightarrow 0} \frac{x-\sin x}{x^3}=\frac{1}{6} \\&\displaystyle\lim_{x\rightarrow 0}\frac{\arcsin x-x}{x^3}=\frac{1}{6} \\&\displaystyle\lim_{x\rightarrow 0}\frac{\tan x-x}{x^3}=\frac{1}{3} \\&\displaystyle\lim_{x\rightarrow 0}\frac{x-\arctan x}{x^3}=\frac{1}{3} \end{aligned}

需要注意的是,当x0x\rightarrow 0时,有

sinx<x<tanx \sin x< x<\tan x

lnu(x)\ln u(x)型的无穷小,做如下等价变换

lnu(x)=ln[1+u(x)1]u(x)1 \ln u(x)= \ln[1+u(x)-1]\sim u(x)-1

微分学

一元函数微分学




(ax)(n)=axlnna (a^x)^{(n)}=a^x\ln^n a

(1ax+b)(n)=(1)nann!(ax+b)n+1 \left( \frac{1}{ax+b} \right)^{(n)}=(-1)^n \frac{a^n\cdot n \text{!}}{(ax+b)^{n+1}}

常用麦克劳林公式

1xx2\frac{1}{\sqrt{ x- x^2}}

ex=1+x+x22!+x33!+o(x3) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)

ln(1+x)=xx22+x33+o(x3) \ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)

(1+x)α=1+αx+α(α1)2!x2+α(α1)(α2)3!x3+o(x3) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+\frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3+o(x^3)

11x=1+x+x2+x3+o(x3) \frac{1}{1-x}=1+x+x^2+x^3+o(x^3)

11+x=1x+x2x3+o(x3) \frac{1}{1+x}=1-x+x^2-x^3+o(x^3)

sinx=xx33!+x55!+o(x5) \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+o(x^5)

arcsinx=x+12×x33+1×32×4×x55+1×3×52×4×6×x77+o(x7) \arcsin x=x+\frac{1}{2}\times\frac{x^3}{3}+\frac{1\times3}{2\times4}\times\frac{x^5}{5}+\frac{1\times3\times5}{2\times4\times6}\times\frac{x^7}{7}+o(x^7)

cosx=1x22!+x44!+o(x4) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4)

1+x=1+x2x28+x316+o(x3) \sqrt{1+x}=1+\frac{x}{2}-\frac{x^2}{8}+\frac{x^3}{16}+o(x^3)

tanx=x+x33+2x515+o(x5) \tan x=x+\frac{x^3}{3}+\frac{2x^5}{15}+o(x^5)

arctanx=xx33+x55+o(x5) \arctan x=x-\frac{x^3}{3}+\frac{x^5}{5}+o(x^5)

积分

不定积分

基础公式

dxx=lnx+Cdxcos2x=sec2xdx=tanx+C1sin2xdx=csc2xdx=cotx+Csecxtanxdx=sinxcos2xdx=d(1cosx)dx=secx+Ccscxcotxdx=cosxsin2xdx=d(1sinx)dx=cscx+C1x21=ln(x+x21)+Ctanxdx=lncosx+Ccotxdx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Cdxa2+x2=1aarctanxa+Cdxx2a2=12alnxax+a+Cdxa2x2=arcsinxa+Cdxx2+a2=ln(x+x2+a2)+Cdxx2a2=lnx+x2a2+C \begin{align} &\int \frac{dx}{x} = \ln|x|+C\\ &\int \frac{dx}{\cos^2 x}=\int \sec^2x \, dx =\tan x+C \\ &\int \frac{1}{\sin^2x} dx=\int \csc^2x dx=-\cot x+C \\ &\int \sec x\tan x \,dx =\int \frac{\sin x}{\cos^2 x} dx =\int \mathrm{d}\left( \frac{1}{\cos x} \right) dx =\sec x+C \\ &\int \csc x\cot x \, dx =\int \frac{\cos x}{\sin^2 x} dx =\int \mathrm{d}\left( \frac{1}{\sin x} \right) dx =-\csc x+C \\ &\int \frac{1}{\sqrt{ x^2-1 }} = \ln(x+\sqrt{ x^2-1 })+C \\ &\int\tan x dx=-\ln|\cos x|+C \\ & \int\cot xdx=\ln|\sin x|+C \\ & \int \sec xdx=\ln|\sec x+\tan x|+C \\ &\int \csc xdx=\ln|\csc x-\cot x|+C \\ & \int\frac{dx}{a^2+x^2}=\frac{1}{a}\arctan\frac{x}{a}+C \\ & \int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln\left|\frac{x-a}{x+a}\right|+C \\ & \int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C \\ & \int\frac{dx}{\sqrt{x^2+a^2}}=\ln(x+\sqrt{x^2+a^2})+C \\ & \int\frac{dx}{\sqrt{x^2-a^2}}=\ln|x+\sqrt{x^2-a^2}|+C \end{align}

常见积分

cos(lnt)dt=excosxdx(x=lnt)=12ex(sinx+cosx)+C \int \cos(\ln t) dt =\int e^x\cos x dx (\text{令}x=\ln t)=\frac{1}{2}e^x(\sin x+\cos x)+C

1+x2dx=x1+x2xd(1+x2)d=x1+x2x21+x2dx=x1+x2(x2+1)11+x2dx=x1+x21+x2dx+11+x2dx    21+x2dx=x1+x2+ln(x+1+x2)    1+x2dx=12(x1+x2+ln(x+1+x2)) \begin{align*} \int \sqrt{ 1+x^2 } dx &=x\sqrt{ 1+x^2 }-\int x\mathrm{d}(\sqrt{ 1+x^2 }) d\\ &=x\sqrt{ 1+x^2 }-\int \frac{x^2}{\sqrt{ 1+x^2 }} dx\\ &=x\sqrt{ 1+x^2 }-\int \frac{(x^2+1)-1}{\sqrt{ 1+x^2 }}dx\\ &=x\sqrt{ 1+x^2 }-\int \sqrt{ 1+x^2 } dx +\int \frac{1}{\sqrt{1+x^2 } } dx \\ \implies 2\int \sqrt{ 1+x^2 } dx&=x\sqrt{ 1+x^2 }+\ln(x+\sqrt{ 1+x^2 })\\ \implies \int \sqrt{ 1+x^2 } dx&=\frac{1}{2} (x\sqrt{ 1+x^2 }+\ln(x+\sqrt{ 1+x^2 })) \end{align*}

定积分

0π/2sinnxdx=0π/2cosnxdx={n1nn3n212π2,当 n 为正偶数, I0=π2.n1nn3n223,当 n 为大于1的正奇数, I1=1. \begin{align*} \int_0^{\pi/2} \sin^n x dx &= \int_0^{\pi/2} \cos^n x dx \\ &= \begin{cases} \displaystyle\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & \text{当 } n \text{ 为正偶数, } I_0 = \frac{\pi}{2}. \\ \displaystyle\frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3}, & \text{当 } n \text{ 为大于1的正奇数, } I_1 = 1. \end{cases} \end{align*}

f(x)f(x)为连续函数,则

abf(x)dx=abf(a+bx)dx \int_{a}^{b}f\left(x\right)\mathrm{d}x=\int_{a}^{b}f\left(a+b-x\right)\mathrm{d}x

提示

  1. t=πxt=\pi-x

0πxf(sinx)dx=π20πf(sinx)dx(其中f(x)连续) \int _{0}^{\pi}xf(\sin x) dx=\frac{\pi}{2}\int _{0}^\pi f(\sin x) dx \quad (\text{其中}f(x)\text{连续})

常见积分

反常积分

+ex2dx=20+ex2dx=π \int _{-\infty}^{+\infty}e^{-x^2} dx=2\int _{0}^{+\infty}e^{-x^2}dx =\sqrt{ \pi }

特殊点

驻点:导数为0的点,极值点一定是驻点,驻点不一定是极值点
拐点:凹凸性改变的点,可能是二阶导等于0的点也可能二阶导是不存在的点
极值点:这个点是x的值,而不是一个坐标

f(x)可导    连续    可积    有界 f(x)\text{可导}\implies \text{连续}\implies \text{可积}\implies \text{有界}