跳至主要內容

积分技巧


secxdx=lnsecx+tanx+C\displaystyle\int \sec xdx=\ln|\sec x+\tan x|+C

证明:

secxdx=1cosxdx=secx+tanxcosx(secx+tanx)dx=1secx+tanxd(secx+tanx)=lnsecx+tanx+C \begin{align*} \int \sec xdx=\int\frac{1}{\cos x}dx &=\int\frac{\sec x+\tan x}{\cos x(\sec x+\tan x)}dx\\&=\int\frac{1}{\sec x+\tan x}d(\sec x+\tan x)\\&=\ln|\sec x+\tan x|+C \end{align*}

或:

secxdx=cosxcos2xdx=11sin2xdsinx=12(11+sinx+11sinx)dsinx=12(11+sinx)d(1+sinx)12(11sinx)d(1sinx)=12ln1+sinx1sinx+C \begin{align*} \int \sec xdx=\int\frac{\cos x}{\cos^2 x}dx &=\int\frac{1}{1-\sin^2 x}d\sin x\\&=\frac{1}{2}\int\left(\frac{1}{1+\sin x}+\frac{1}{1-\sin x}\right)d\sin x\\&=\frac{1}{2}\int\left(\frac{1}{1+\sin x}\right)d(1+\sin x)-\frac{1}{2}\int\left(\frac{1}{1-\sin x}\right)d(1-\sin x)\\&=\frac{1}{2}\ln\left|\frac{1+\sin x}{1-\sin x}\right|+C \end{align*}

cscxdx=lncscxcotx+C\displaystyle\int \csc xdx=\ln|\csc x-\cot x|+C

证明:

cscxdx=1sinx=cscxcotxsinx(cscxcotx)=1cscxcotxd(cscxcotx)=lncscxcotx+C \begin{align*}\int \csc xdx=\int\frac{1}{\sin x}&=\int\frac{\csc x-\cot x}{\sin x(\csc x-\cot x)}\\&=\int\frac{1}{\csc x-\cot x}d(\csc x-\cot x)\\&=\ln|\csc x-\cot x|+C \end{align*}

或:

cscxdx=sinxsin2xdx=11cos2dsinx=12(11cosxd(1cosx)11+cosxd(1+cosx))=12ln1cosx1+cosx \begin{align*}\displaystyle\int \csc xdx=\int\frac{\sin x}{\sin ^2x}dx&=\int\frac{1}{1-\cos^2}d\sin x\\&=\frac{1}{2}\left(\int\frac{1}{1-\cos x}d(1-\cos x)-\int\frac{1}{1+\cos x}d(1+\cos x)\right)\\&=\frac{1}{2}\ln\left|\frac{1-\cos x}{1+\cos x}\right| \end{align*}

dxx2+a2=ln(x+x2+a2)+C\displaystyle\int\frac{dx}{\sqrt{x^2+a^2}}=\ln(x+\sqrt{x^2+a^2})+C

证明:

由恒等式1+tan2x=sec2x1+\tan^2x=\sec^2 x,令x=atantx=a\tan t,则dx=asec2tdtdx=a\sec^2tdt

则有

dxx2+a2=asec2tdta2(1+tan2t)=sectdt=lnsect+tant+C=lna2+x2+xa+C=ln(x+x2+a2)+C \begin{align*}\int\frac{dx}{\sqrt{x^2+a^2}}=\int\frac{a\sec^2tdt}{\sqrt{a^2(1+\tan^2t)}}&=\int\sec tdt\\&=\ln|\sec t+\tan t|+C\\&=\ln|\frac{\sqrt{a^2+x^2}+x}{a}|+C\\&=\ln(x+\sqrt{x^2+a^2})+C^{'} \end{align*}

costsin2tdt==1sintdt=csctdt=ln(csctcott) \int \frac{\cos t}{\sin^2 t} dt ==-\int \frac{1}{\sin t} dt =-\int \csc t dt=-\ln(\csc t-\cot t)